If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+24k-3=0
a = 4; b = 24; c = -3;
Δ = b2-4ac
Δ = 242-4·4·(-3)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{39}}{2*4}=\frac{-24-4\sqrt{39}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{39}}{2*4}=\frac{-24+4\sqrt{39}}{8} $
| 3n-3=3n-1- | | y^-y-30=0 | | 4x+7+3x=10 | | 3p+2÷2+7=17 | | 6x+7/3x+2=4x+7/2x+3= | | 3x/32-x/12=32.5 | | 7(x+4)-3(2x-1)=14 | | 18/x=9/6 | | -0.5x^2+200x-2000=0 | | 4x-12x+5=-3x+4-x | | 5x+3x+2x=25 | | 4/x=0.8 | | 4x-12x+5=-3+4-x | | 0.7(60)^.03=x | | 3+2x-4=x+1 | | -x-43=65 | | 2.5x-8=14 | | e+8=−28−3e | | 19a-4a+23=8a-19 | | 4x+x2+21=180 | | 2(x-7)+2x=-(7x+2) | | 4(-2x-1)+16=X-9x+4 | | 4x3-9x=-2 | | 4(-2x-1)+16=X-9x+ | | 19x-4×+23=8×-19 | | 12x-200=2x+400 | | 2(7+5y)-3y=-35= | | 1+x/5+x/2=1-x-3/2 | | 6a+2=9a+14 | | 4y-8y=4-32= | | x-8/8-x/2=1+3x/4 | | X^2-12x-729=0 |